Academic Learning Time

Factors of Academic Learning Time

I will describe what is occurring in a classroom where ALL students are learning.

I will define and analyze the four factors of Academic Learning Time.

I will summarize the components of Direct Interactive Instruction and the learner variables that maximize Academic Learning Time.

Demonstration Lessons

I will observe a low DII lesson and identify the evidence of the four components of DII.

I will observe a high DII lesson and identify the evidence of the four components of DII.

I will discuss the similarities and differences between the demonstration lessons.

Assessment and Research

I will analyze the research and read the article, “Putting Theory into Practice: The Origins and Applications of Direct Interactive Instruction”
What does Barak Rosenshine say is the difference between direct and indirect teaching?

Barak Rosenshine says the difference between direct and indirect teaching is . . .
Factors of Academic Learning Time

Higher achievement results when skills and concepts are taught directly than when they are presented indirectly or not at all. The belief that students will learn inferentially and incidentally through close, prolonged contact with academic materials is simply not well founded. To get the message, they [students] must be given the message.

— Barak Rosenshine

As principal, I have appreciated the support and guidance that the ALS team has provided. We were at a place as a district where we needed help “putting it all together.” Through the implementation of our Leadership Academy, Direct Interactive Instruction (DII) coaching and Co-Plan/Co-Teach sessions, Benchmark Assessments, and Data-Analysis Protocol, ALS helped us coordinate our efforts and get everyone on the “same page.”

ALS helped us grow as a district by walking us through the implementation of DII, Benchmark Assessments, data analysis, and progress monitoring. This went hand-in-hand with the Professional Learning Community that we already had in place.

Having ALS provide the Direct Interactive Instruction coaching in conjunction with the implementation of our new ELA and Math curriculum was perfect! We are all now using common academic language at each school site and throughout the district!”

— Lauren Kinney
Principal, Beaumont Unified School District
2011 Winner of Terrel H. Bell Award for Outstanding School Leadership

Action Learning Systems is one of our most important partners and has greatly attributed to our school’s success. Our coach has helped us focus and align our instructional programs, providing the coaching we needed to exit Program Improvement. I don’t believe we could have experienced a 117 API point gain without the training, coaching, and advice from ALS.

— Emy Flores
Principal, Fullerton Elementary School District
STRUCTURED INTERACTION

What would you see and hear in a classroom where ALL students are learning?

In a classroom where ALL students are learning, I would see . . .

In a classroom where ALL students are learning, I would hear . . .
In a classroom where ALL students are learning, I would . . .

<table>
<thead>
<tr>
<th>See</th>
<th>Hear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Using the factors of Academic Learning Time, describe what you do in your classroom to control time.

In order to control time in my classroom, I would . . .

What is the value of focusing on Academic Learning Time?

The value of focusing on Academic Learning Time is . . .

What is needed to increase Success Rate within the Available Time?

__________ is needed to increase Success Rate within Available Time because . . .
Four Factors of Academic Learning Time

<table>
<thead>
<tr>
<th>Available Time:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocated Time:</td>
<td></td>
</tr>
<tr>
<td>Engagement Rate:</td>
<td></td>
</tr>
<tr>
<td>Success Rate:</td>
<td></td>
</tr>
</tbody>
</table>
Which statements connect to maximizing Academic Learning Time?

The statement ___________ connects to maximizing Academic Learning Time because . . .

What information do you find interesting or consider to be an “aha”?

I consider ___________ to be an “aha” because . . .

What do you have a question about or need clarification for?

I have a question about or need clarification for ___________ because . . .

Which statements validate your current practice?

The statement ___________ validates my current practice of ___________ because . . .
Academic Learning Time

Academic Learning Time (ALT) can be specifically defined as the amount of time during which students are actively, successfully, and productively engaged in learning (Fisher and Berliner, 1985). It includes all available time, time allocated to instruction, and the engagement rate of students. When allocated time is equal to available time and students are highly engaged, the result is a higher success rate (Joyce, Weil, and Calhoun, 2003).

Four Factors that Influence ALT

1. Available Time is the time officially or formally designated for students to work at learning a topic. It is sometimes identified as "scheduled time" and is usually determined by state mandate, district policy, or site leadership. Available Time represents the upper limit of time that can be allocated to instruction.

2. Allocated Time is the amount of time teachers plan to use or allocate for instructional activities. It represents the upper limit of in-class opportunities for students to be engaged in learning.

3. Engagement Rate is the proportion of instructional time during which students are engaged in learning. Evidence of overt engagement includes students who are actively paying attention, completing written work, or interacting with peers on assigned work. Covert engagement can include passive attention, think time, and listening to a teacher or other student.

4. Success Rate is the proportion of engaged learning time during which students are performing meaningful and relevant instructional tasks. These tasks should provide a balance of high- and medium-success, with more activities targeted at a high-success level or mastery (Greenwood, Terry, Marquis, and Walker, 1994).

Although the amount of time teachers allocate (Allocated Time) and use for instruction—as well as the proportion of time during which students are engaged (Engagement Rate)—are all positively correlated with learning, it is the proportion of engaged time that is productive, active, and successful that relates most strongly to achievement (Success Rate). In other words, in order to take greatest advantage of Academic Learning Time, teachers must:

- maximize their allocation of time to instruction,
- maximize student engagement rate, and
- maximize student experiences that result in a high level of success on meaningful academic tasks.
How does each of the four components of Direct Interactive Instruction contribute to an increase in a student’s Success Rate?

The Direct Interactive Instruction component __________ contributes to an increase in a student’s Success Rate by . . .

How does each of the three learning behaviors contribute to an increase in a student’s Success Rate?

The learning behavior __________ contributes to an increase in a student’s Success Rate by . . .

How is Academic Learning Time maximized in a classroom?

Academic Learning Time is maximized by . . .
Using Direct Interactive Instruction to Maximize Academic Learning Time

Standards and Measurable Objectives

Lesson Structure and Sequence

Student Engagement: Interaction, Feedback, and Correctives

Proactive Classroom Management

SUCCESS RATE

TRANSFER

RETENTION

MOTIVATION

ENGAGEMENT RATE

AVAILABLE TIME

ALLOCATED TIME

SUCCESS RATE

ENGAGEMENT RATE

TRANSFER

RETENTION

MOTIVATION

AVAILABLE TIME

ALLOCATED TIME

SUCCESS RATE

ENGAGEMENT RATE

TRANSFER

RETENTION

MOTIVATION

AVAILABLE TIME

ALLOCATED TIME

SUCCESS RATE

ENGAGEMENT RATE

TRANSFER

RETENTION

MOTIVATION

AVAILABLE TIME

ALLOCATED TIME

SUCCESS RATE

ENGAGEMENT RATE

TRANSFER

RETENTION

MOTIVATION

AVAILABLE TIME

ALLOCATED TIME

SUCCESS RATE

ENGAGEMENT RATE

TRANSFER

RETENTION

MOTIVATION
Teaching Behaviors

<table>
<thead>
<tr>
<th>Standards and Measurable Objectives</th>
<th>Lesson Structure and Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards and Measurable Objectives provide the focus for every lesson. They are posted and clarified at the beginning of the lesson, essential features of the objectives are demonstrated by students at key points during the lesson, and students “show what they know” at the end of the lesson.</td>
<td>Lessons provide the gradual transfer of accountability from the teacher to the student through consistent and unambiguous instructional routines that include Input and Modeling, Structured Practice, Guided Practice, and Independent Practice. Content and concept instruction is sequential, chunked, and scaffolded to maximize transfer, mastery, and meaningful retention.</td>
</tr>
</tbody>
</table>

Student Engagement: Interaction, Feedback, and Correctives

Student engagement is the student’s persistence at a task. The success a student experiences during a lesson is ultimately the most important factor in Academic Learning Time. Lesson momentum is maintained through multiple levels of interaction, frequent checking for understanding, explicit feedback, and use of correctives.

Proactive Classroom Management

Classroom management is positive, preventative, and embedded within the instruction. Rules, procedures, and consequences are systematically and consistently taught and applied, resulting in a high degree of engagement and maximization of Academic Learning Time.

Impact . . .
Learning Behaviors

TRANSFER explains how what students have learned or are learning can either help them learn and remember something new or it can interfere with new learning. Depending on whether what they have learned helps them remember or interferes with remembering is Positive or Negative Transfer.

- Positive Transfer implies that past learnings are aiding or propelling the new learning (Hunter, 1967).
- Negative Transfer implies that past learnings are actively interfering with the accomplishment of a new learning (Hunter, 1967).

MOTIVATION is defined as a state of need or desire that activates the student to do something that will satisfy that need or desire. A teacher cannot “motivate” a student, but he/she can manipulate environmental variables that may result in an increase or decrease in motivation (Hunter, 1967). When students are not motivated, the reasons for this lack in motivation can usually be attributed to a lack of one or more “SKILL” factors.

S – Success
K – Knowledge of Results
I – Interest
L – Level of Concern
L – Level of Reward, Extrinsic to Intrinsic

RETENTION is dependent upon a number of factors that assist in either promoting memory or interfering with memory. How well something is taught the first time has a strong impact on a student’s ability to remember. A teacher can consciously include certain factors during a lesson that increase the degree of original learning, thereby increasing the chance that students will remember. These factors include meaning, modeling, and meaningful processing.

However, those factors alone will not ensure retention. Students must have ample opportunity to practice. The relationship between practice and retention is more complex than doing something repetitively. Successful planned practice involves decisions of “how much,” “how many times,” and “how often.”

Degree of Original Learning
+ Amount and Scheduling of Practice

Retention
STRUCTURED INTERACTION

How were Standards and Measurable Objectives utilized in each lesson?

In the ____________ lesson, Standards and Measurable Objectives were utilized by . . .

What was the Lesson Structure and Sequence in each lesson?

In the ____________ lesson, the Lesson Structure and Sequence was . . .

How was Student Engagement: Interaction, Feedback, and Correctives employed in each lesson?

In the ____________ lesson, Student Engagement: Interaction, Feedback, and Correctives was employed by . . .

How was Proactive Classroom Management demonstrated in each lesson?

In the ____________ lesson, Proactive Classroom Management was demonstrated by . . .
Demonstration Lessons: Direct Interactive Instruction

<table>
<thead>
<tr>
<th>Standards and Measurable Objectives</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson Structure and Sequence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Engagement: Interaction, Feedback, and Correctives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proactive Classroom Management</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What are the similarities between the low DII and high DII lessons?

The similarities between the low DII and high DII lessons are . . .

What are the differences between the low DII and high DII lessons?

The differences between the low DII and high DII lessons are . . .
Comparing Low/High DII Lessons

<table>
<thead>
<tr>
<th>Low DII</th>
<th>High DII</th>
</tr>
</thead>
</table>

Similarities Between Lessons:

Differences Between Lessons in Regard to:

- Standards and Measurable Objectives
- Lesson Structure and Sequence
- Student Engagement: Interaction, Feedback, and Correctives
- Proactive Classroom Management
- Academic Learning Time
Text: “Putting Theory into Practice: The Origins and Applications of Direct Interactive Instruction”

Prediction

Evidence

Summary

Putting Theory into Practice:
The Origins and Applications of Direct Interactive Instruction

Kit Marshall, Ph.D., CEO Action Learning Systems, Inc.

Direct Interactive Instruction (DII) is a comprehensive instructional model focused on ensuring that all students achieve high standards. The framework of Action Learning Systems’ DII model represents decades of grounding research and studies by America’s most highly-respected leaders in educational research. The paradigm, purposes, premises, principles, and practices underlying the DII model hold the power to ultimately "reframe" and refocus the paradigm of traditional education.

The First Wave: Paradigm Pioneers

Paradigms are philosophical and theoretical frameworks that support theories, experiments, and methodologies. They shape the thinking patterns, beliefs, and cultures of groups, organizations, and even entire societies—including educational societies. For example, the school system has been organized and operated in much the same framework for generations. It revolves around the tradition of how and when services are provided. This traditional paradigm results in student achievement symbolized by the bell-curve icon. It has fueled the beliefs and actions in classrooms for decades.

In 1966, the publication of the “Equality of Educational Opportunity Study” (EEOS), or The Coleman Report, challenged this paradigm. The Coleman Report’s primary finding was that student characteristics and family and neighborhood socioeconomic status factors (SES), not school variables, accounted for almost all measured differences in student achievement in America’s schools. Above all, it showed that the keys to school effectiveness lay elsewhere (Coleman, et al., 1966).

Around the same time, Harvard University professor John B. Carroll argued that student aptitude, which had traditionally been viewed as the level to which a student could learn a particular subject, more accurately reflects an index of learning rate. That is, ALL children have the potential to learn but differ in the amount of time they require to do so (Carroll, 1963). Carroll defined aptitude as measuring “the amount of time required to learn a task to a given criterion level under ideal instructional conditions.” In its simplest form, Carroll’s model proposed...
that, if each student were allowed the time needed to learn a subject to some level, he or she could be expected to attain that level.

Benjamin Bloom from the University of Chicago then transformed Carroll’s conceptual formula into the practical working model that came to be called “Learning for Mastery” (1968). He determined that instruction is not a naturally occurring/random phenomenon but a deliberate intervention in what otherwise would resemble the chance learning processes of students. Therefore, instruction that is intentional, well planned, and effective should produce a sharply skewed curve of achievement with most of the students doing very well—not a bell-shaped curve of achievement (Bloom, 1968).

With this instructional model, Bloom proved that if students were “normally distributed” with respect to aptitude (how much time they would need to learn a given task) and if the instructional variables (time provided and quality of instruction) were systematically managed, nearly all students should be able to attain, or master, a clearly defined objective, or standard, refuting the bell-shaped curve of achievement and confronting the traditional educational beliefs and framework (see Figure A). His results and evidence pioneered the beginnings of a paradigm shift.

Fellow pioneer and advocate James H. Block supplied more evidence confirming that the Mastery Learning model provided all students the opportunities to learn and achieve, making high expectations of success the norm, not the dream. Most of the students who received instruction using Mastery Learning strategies could also demonstrate the same high-success attitude and orientation as that of the highest 25 percent. Forty extensive research studies in the 1960s, 1970s, and 1980s ALL showed proof of results that the simple structure and application of a

Figure A

- **Aptitude**
- **Achievement**
few basic concepts of Mastery Learning could literally reverse failure rates among student populations for whom expectations were traditionally low for school success (Block, 1971).

Results of subsequent studies indicated a significant correlation between teacher expectations and chronically-low student performance. This correlation clarified that high expectations and expanded opportunities were controllable conditions of quality instruction and student success.

The conclusions of the grounding research laid by the Paradigm Pioneers are as firm today as they were forty years ago.

- Expectations drive student achievement.
- High Expectations must be accompanied by Expanded Opportunity.
- Expanded Opportunity has two critical aspects: Time and Quality Instruction (maximize Academic Learning Time not quantity of time).

The early Paradigm Pioneers over the next 20 years would use a model of high expectations and expanded opportunity to shine a light on closely-held beliefs and assumptions about learners, learning, and school practices. Seen through the screen of high expectations and expanded opportunity, beliefs had to change and instructional practices had to be examined. Action Learning Systems answered the call, examined practices, and used the Pioneers’ example of maximizing Academic Learning Time to shape and mold their services for educators and children.

The Second Wave: Paradigm Shifters

A paradigm shift occurs when the beliefs and assumptions of the current paradigm can no longer be explained or supported by evidence, practice, or reason. The base of research laid by Carroll, Bloom, Block, and other Paradigm Pioneers began the paradigm shift as the evidence grew that high expectations and expanded opportunity fuel the success of all student learners.

The leaders in the second wave added a new dimension to the paradigm shift by attributing professional development, including coaching and the role of the principal, as critical factors needed in the schema of Mastery Learning. Two of these leaders are notable for the additions

Notes

5. What is Mastery Learning?

6. What were the conclusions of the Paradigm Pioneers?
they made to the theory and practice of Mastery Learning—Madeline Hunter of UCLA and Tom Guskey of the University of Kentucky.

Madeline Hunter used the research on Mastery Learning to develop a structured design and delivery system she called “Mastery Teaching.” Hunter’s legacy was three-fold:

1) a relentless focus on the role of coaching and long-term professional development as critical to the implementation of quality instruction;

2) a new focus on the “Learner Variables”—the orientations, attitudes, and learning behaviors (motivation, transfer, and retention) that all students can acquire within a classroom with high expectations and expanded opportunity; and

3) a powerful advocacy for teaching as an intentional act and that effective teachers focus on continuous improvement of the variables of quality instruction.

Tom Guskey assisted teachers and administrators in using existing curriculum materials and features of Mastery Learning to clarify lesson objectives from standards and to design carefully sequenced units of instruction, complete with formative assessments and explicit feedback/corrective opportunities aligned with criterion. His attention to curriculum and assessment alignment and his practical work with teachers and schools identified two additional conditions that were essential to quality instruction. These were “Clarity of Focus” and “Tight Alignment.”

Although the actual appearance or format of these elements may vary, they serve a specific purpose in a Mastery Learning classroom and most-clearly differentiate Mastery Learning from other instructional approaches. These two essential elements are: 1) the feedback, corrective, and enrichment process; and 2) congruence among instructional components (Guskey, 1987).

The conclusions of the Paradigm Shifters supported and expanded the model forged by the Paradigm Pioneers.

- Schools should be structured and operated so that high standards can be achieved and maximized for ALL students.

- What we believe about learners, learning, and the conditions (variables) we control really matters.

- All students can learn and deserve to succeed at high levels.

- Success breeds success.

Notes

7. What was the new dimension added in the second wave?

8. What was the focus of Tom Guskey’s work with teachers and administrators?
• Schools control the conditions (variables) of success:
 - **Focus** on high standards and measurable objectives
 - **Alignment** with standards through lesson design, delivery, and assessment
 - **Expectations** that ALL students can achieve high standards
 - **Opportunity** that ensures ALL students receive the time and quality instruction they need to achieve high standards

The efforts of the Paradigm Pioneers and Shifters supported the construction of a new high-success paradigm. Direct Interactive Instruction is the teaching-learning model that evolved from their huge base of research findings, the unassailable foundation of theory, logic, and common sense, and the irrefutable evidence that ALL students can learn.

The Third Wave: Direct Interactive Instruction

For over 20 years, Action Learning Systems has systematically and successfully applied the Direct Interactive Instruction (DII) model across all grade levels, content areas, demographics, and socioeconomic groups, showing once again that with Focus, Alignment, Expectations, and Opportunity ALL students can learn. The framework and implementation of the DII model comprehensively impacts and alters the traditional paradigm of education to represent the logical and practical solution to today’s conflicting educational system demands and diverse classroom needs (see Figure B). It drives an instructional system that provides for mastery learning and high success in student achievement.

9. What were the conclusions of the Pioneer Shifters?

10. What is needed to ensure that ALL students learn?

Figure B

Altering Traditional Classroom Practice

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Paradigm of Education</td>
<td>High Success Paradigm of Education</td>
</tr>
<tr>
<td>Fixed Time</td>
<td>Flexible Time</td>
</tr>
<tr>
<td>Limited Opportunity</td>
<td>Expanded Opportunity</td>
</tr>
<tr>
<td>Focus on Curriculum Coverage</td>
<td>Focus on Standards Mastery</td>
</tr>
<tr>
<td>Variable Expectations</td>
<td>Mastery Expectations for ALL</td>
</tr>
<tr>
<td>Vague Standards</td>
<td>Clear, Measurable, Transparent Standards</td>
</tr>
<tr>
<td>Bell-Curve Results</td>
<td>Skewed-Curve Results</td>
</tr>
</tbody>
</table>
The power of Direct Interactive Instruction as an instructional model lies in the consistent, persistent, and creative application of practices that result in an increased student success rate through students’ transfer, motivation, and retention of knowledge. However, with DII the whole is greater than the sum of its parts. Therefore, it is important to understand all the elements and how they work together to achieve high success for all students.

Components of Direct Interactive Instruction

In order to maximize Academic Learning Time, teachers can and should manipulate how the Available Time in their classrooms is allocated in order to increase the amount of Allocated Time for instruction using the components of DII. Figure C on page 28 offers a visual schema depicting how DII maximizes Academic Learning Time when a teacher utilizes all four of its components.

- **Standards and Measurable Objectives** – Standards and Measurable Objectives are posted and clarified at the beginning of the lesson, essential features of the objectives are demonstrated by students at key points during the lesson, and students “show what they know” at the end of the lesson.

- **Lesson Structure and Sequence** – Lessons provide a gradual transfer of accountability from the teacher to the student through consistent and unambiguous instructional routines that include Input and Modeling, Structured Practice, Guided Practice, and Independent Practice. Content and concept instruction is sequential, chunked, and scaffolded to maximize transfer, mastery, and meaningful retention.

- **Student Engagement: Interaction, Feedback, and Correctives** – Teacher and student engagement is focused on the essential features of the objective. Momentum is maintained through fast-paced instruction, multiple levels of interaction, frequent checking for evidence of understanding, explicit feedback, and use of correctives.

- **Proactive Classroom Management** – Classroom management is positive, preventative, and embedded within the instruction. Rules, procedures, and consequences are systematically and consistently taught and applied, resulting in a high degree of engagement and maximization of Academic Learning Time.

Notes

11. What makes Direct Interactive Instruction powerful?

12. What are the components of Direct Interactive Instruction?
The Results of DII – Success for ALL Students

The ultimate goal for ALL students to learn and succeed cannot be reached unless those students are active participants in the learning. By consciously, consistently, and coherently implementing the components of DII, students’ learning behaviors are manipulated and stimulated. The results are that students can transfer information, are motivated throughout learning, and retain knowledge for the long-term. Understanding each behavior and how to manipulate or stimulate student application will lead to greater student achievement.

Transfer – explains how what students have learned or are learning can either help them learn and remember something new or it can interfere with new learning. Depending on whether what they have learned helps them remember or interferes with remembering is Positive or Negative Transfer.

- Positive Transfer implies that past learnings are aiding or propelling the new learning (Hunter, 1967).
- Negative Transfer implies that past learnings are actively interfering with the accomplishment of a new learning (Hunter, 1967).

Motivation – is defined as a state of need or desire that activates the person to do something that will satisfy that need or desire. A teacher cannot “motivate” a student, but he/she can manipulate environmental variables that may result in an increase or decrease in motivation (Hunter, 1967). When students are not motivated, the reasons for this lack in motivation can usually be attributed to a lack of one or more “SKILL” factors.

S – Success
K – Knowledge of Results
I – Interest
L – Level of Concern
L – Level of Reward, Extrinsic to Intrinsic

Notes

13. What must students do in order to learn and succeed?

14. What is Transfer?
Retention – is dependent upon a number of factors that assist in either promoting memory or interfering with memory. How well something is taught the first time has a strong impact on a student’s ability to remember. A teacher can consciously include certain factors during a lesson that increase the degree of original learning, thereby increasing the chance that students will remember. These factors include meaning, modeling, and meaningful processing.

However, those factors alone will not ensure retention. Students must have ample opportunity to practice. The relationship between practice and retention is more complex than doing something again and again and again. Successful planned practice involves decisions of “how much,” “how many times,” and “how often.”

Degree of Original Learning
+ Amount and Scheduling of Practice

Retention

Why Direct Interactive Instruction Is Successful

Action Learning Systems’ DII model is the synthesis of years of valid research and practice. It is an instructional design that empowers teachers to manage and coordinate the teaching and learning behaviors known to achieve mastery for ALL students. Figure C on page 28 illustrates how this innovative design allows both the teaching and learning behaviors to function in coordination to increase student Success Rate.

The success of DII lies in its singular focus on utilizing the teaching components to stimulate the learning behaviors that maximize Academic Learning Time. It transcends all traditional instructional structures because it can be applied to and transform any set of standards, curriculum, and/or published program into an instructional design that maximizes mastery for ALL.
Based on a foundation of ground-breaking work and undeniable results, DII responds directly and explicitly to one of today’s greatest challenges—to increase expectations for ALL students of diverse populations and individual needs, including English learners, students in a range of socioeconomic situations, and Students with Disabilities (SWD). No longer is it acceptable for there to be unequal expectations in education.

For many years individual differences have been used to justify the fact that all cannot learn and that some learn better than others . . . Is it not possible that individual differences have been used as a scapegoat for ineffective planning, instruction, and decades of sorting and selecting students for success while condemning others to failure? (Block, 1971)

Now is the time for Direct Interactive Instruction in which ALL students succeed at high levels, and Action Learning Systems is dedicated to bringing it to today’s classrooms, teachers, and students.
Text: “Putting Theory into Practice: The Origins and Applications of Direct Interactive Instruction”

<table>
<thead>
<tr>
<th>Subject</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Wave</td>
<td></td>
</tr>
<tr>
<td>Second Wave</td>
<td></td>
</tr>
<tr>
<td>Third Wave</td>
<td></td>
</tr>
<tr>
<td>Components of DII</td>
<td></td>
</tr>
<tr>
<td>Results of DII</td>
<td></td>
</tr>
</tbody>
</table>

Under-the-Surface

- how, why, would, could, and should

On-the-Surface

- who, where, when, and what happened

Reflection

__

__

__
Reflection

What do I keep doing?

What do I start doing?

What do I stop doing?
Reflection

What do I keep doing?

What do I start doing?

What do I stop doing?